[1]王会菊.度量测度空间中障碍问题解的Caccioppoli 型不等式[J].西安工业大学学报,2019,(06):629-631.[doi:10.16185/j.jxatu.edu.cn.2019.06.001 ]
 WANG Huiju.Caccioppoli Type Inequalities for Solutions to Obstacle Problems in Metric Measure Spaces[J].Journal of Xi'an Technological University,2019,(06):629-631.[doi:10.16185/j.jxatu.edu.cn.2019.06.001 ]
点击复制

度量测度空间中障碍问题解的Caccioppoli 型不等式()
分享到:

《西安工业大学学报》[ISSN:1673-9965/CN:61-1458/N]

卷:
期数:
2019年06期
页码:
629-631
栏目:
基础科学
出版日期:
2019-12-25

文章信息/Info

Title:
Caccioppoli Type Inequalities for Solutions to Obstacle Problems in Metric Measure Spaces
文章编号:
1673-9965(2019)06-0629-03
作者:
王会菊
(西北工业大学 理学院,西安 710129
Author(s):
WANG Huiju
(School of Natural and Applied Sciences,Northwestern Polytechnical University,Xi'an 710129,China)
关键词:
度量测度空间 障碍问题 Caccioppoli型不等式 有界性
Keywords:
metric measure space obstacle problem Caccioppoli type inequality boundedness
分类号:
O175.2
DOI:
10.16185/j.jxatu.edu.cn.2019.06.001
文献标志码:
A
摘要:
为了研究在度量情形下Orlicz-Sobolev空间中的障碍问题,本文通过选取适当的截断函数,利用 “填洞法” 证明了障碍问题解的Caccioppoli型不等式。文中结论为研究障碍问题解的有界性的提供了理论基础。
Abstract:
In order to study the obstacle problems in Orlicz-Sobolev spaces in the metric setting,suitable cutoff functions and the “hole-filing” method are applied to establish Caccioppoli type inequalities for solutions to obstacle problems.The result obtained offers a theoretical basis for the study of the boundedness of solutions to obstacle problems.

参考文献/References:


[1] CAFFARELLI A.The Obstacle Problem Revised[J].Journal of Fourier Analysis and Applications,1998,4(4/5):383.
[2] CAFFARELLI A,FRIEDMAN A.The Obstacle Problems for the Biharrmonic Operator[J].Annali della Scuola Normale Superiore di Pisa Classe di Scienze,1979,6(4):151.
[3] FRENTZ M,GOMARK E,NYSTRON K.The Obstacle Problem for Parabolic Nondivergence Form Operators of Hörmander Type[J].Journal of Differential Equations,2012,252:5002.
[4] BJORN A,BJORN J.Nonlinear Potential Theory on Metric Spaces[M].Zurich:European Mathematical Society,2011.
[5] DONG Y,NIU P.Estimates in Morry Spaces and Hölder Continuity for Weak Solutions to Degenerate Elliptic Systems[J].Manuscripta Mathematica,2012,138(3/4):419.
[6] NIU P,ZHU M.Regularity in Orlicz Spaces for Nondivergence Degenerate Elliptic Equations in Carnot Groups[J].Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A,2013,108(2):577.
[7] KINNUNEN J,MARTIO O.Nonlinear Potential Theory on Metric Spaces[J].Illinois Journal of Mathematics,2002,46(3):857.
[8] NIU P,WANG H.Gehring's Lemma for Orlicz Functions in Metric Measure Spaces and Higher Integrability for Convex Integral Functionals[J].Houston Journal of Mathematics,2018,44(3):941.
[9] WANG H,NIU P.Local Boundedness for Minimizers of Convex Integral Functionals [EB/OL].[20190529].https://www.mscand.dk/forthcoming.
[10] TUOMINEN H.OrliczSobolev Spaces on Metric Measure Spaces[J].Annales Academiae Scientiarum Fennicaemathematica,2014,135:1.

备注/Memo

备注/Memo:
收稿日期:2019-05-29
基金资助:国家自然科学基金资助项目(11771354)。 第一作者简介:王会菊(1989-),女,西北工业大学博士研究生,主要研究方向为偏微分方程理论及其应用,E-mail:huijuwang@mail.nwpu.edu.cn。
(编辑、校对 肖 晨)
更新日期/Last Update: 2019-12-25