[1]熊艳杰,徐大鹏,程赵辉,等.铸态和烧结态AlCoCrFeNi高熵合金模拟海水腐蚀性能研究[J].西安工业大学学报,2020,(01):76-81.[doi:10.16185/j.jxatu.edu.cn.2020.01.011 ]
 XIONG Yanjie,XU Dapeng,CHENG Zhaohui,et al.Study of Simulated Seawater Corrosion Performance of AlCoCrFeNi High Entropy Alloy in As-Cast and Sintered State[J].Journal of Xi'an Technological University,2020,(01):76-81.[doi:10.16185/j.jxatu.edu.cn.2020.01.011 ]
点击复制

铸态和烧结态AlCoCrFeNi高熵合金模拟海水腐蚀性能研究()
分享到:

《西安工业大学学报》[ISSN:1673-9965/CN:61-1458/N]

卷:
期数:
2020年01期
页码:
76-81
栏目:
材料科学与工程
出版日期:
2020-02-15

文章信息/Info

Title:
Study of Simulated Seawater Corrosion Performance of AlCoCrFeNi High Entropy Alloy in As-Cast and Sintered State
文章编号:
1673-9965(2020)01-0076-06
作者:
熊艳杰徐大鹏程赵辉魏敬鹏
(西安工业大学 材料与化工学院,西安 710021
Author(s):
XIONG YanjieXU DapengCHENG ZhaohuiWEI Jingpeng
(School of Materials and Chemical Engineering,Xi'an Technological University,Xi'an 710021,China)
关键词:
真空电弧熔炼 放电等离子烧结 高熵合金 模拟海水 电化学腐蚀
Keywords:
vacuum arc melting spark plasma sintering high entropy alloy simulated seawater electrochemical corrosion
分类号:
TG142.71
DOI:
10.16185/j.jxatu.edu.cn.2020.01.011
文献标志码:
A
摘要:
为了研究铸态和烧结态AlCoCrFeNi高熵合金在模拟海水介质下的电化学腐蚀性能,采用真空电弧熔炼和放电等离子烧结工艺制备AlCoCrFeNi高熵合金,分别采用X射线衍射仪(XRD)和光学显微镜(OM)分析其相结构和微观组织,采用电化学工作站对其进行电化学试验测试。研究结果表明: AlCoCrFeNi铸态合金组织呈现等轴晶形貌,物相为单一BCC结构; 烧结态合金组织呈球形形貌,在900 ℃的烧结温度下,除了BCC相,还出现极少量的B2相以及FCC相。烧结态和铸态自腐蚀电位分别为-0.535 4 V和-0.667 6 V,自腐蚀电流密度分别为2.914 9×10-5 A·cm-2和2.150 4×10-5 A·cm-2,铸态合金的钝化区比烧结态宽。2种合金均只出现一个容抗弧,且铸态合金的容抗弧半径远大于烧结态合金,表明铸态合金的耐蚀性优于当前烧结温度下的烧结态合金。
Abstract:
In order to study the electrochemical corrosion performance of as-cast and sintered AlCoCrFeNi high-entropy alloys in simulated seawater medium,vacuum arc melting and spark plasma sintering processes were used to prepare AlCoCrFeNi high-entropy alloys.Their structure and microstructure were analyzed in the XRD and OM,respectively,and the electrochemical test was performed in the electrochemical workstation.The results show that the AlCoCrFeNi as-cast alloy has an equiaxed morphology and its phase shows a single BCC structure; the sintered alloy has a spherical morphology.At 900 ℃ sintering temperature,a small amount of B2 and FCC phase as well as BCC phase appear.The sintered and cast self-corrosion potentials are -0.535 4 V and -0.667 6 V,respectively,and their self-corrosion current density are 2.914 9×10-5 A·cm-2 and 2.150 4×10-5 A·cm-2.The passivation zone of the as-cast alloy is wider than that of the sintered alloy.Both alloys have only one capacitive arc,and the radius of the capacitive arc of the as-cast alloy is much larger than that of the sintered alloy,which indicates that the corrosion resistance of the as-cast alloy is better than the sintered alloy at the current sintering temperature.

参考文献/References:

[1] 郝晓博,刘茵琪,李渤渤,等.船舶用Ti70合金在人工海水中的腐蚀行为研究[J].腐蚀科学与防护技术,2019,31(1):27. HAO Xiaobo,LIU Yinqi,LI Bobo,et al.Corrosion Behavior of Marine Ti70 Alloy in Artificial Seawater[J].Corrosion Science and Protection Technology,2019,31(1):27.(in Chinese) [2] 白斌,王强,侯蕾,等.耐海洋环境腐蚀用中厚板的研发[J].河北冶金,2019(9):15. BAI Bin,WANG Qiang,HOU Lei,et al.Development and Reserch of Corrosion Resistant Steel Plate Suitable for Marine Environment [J].Hebei Metallurgy,2019(9):15.(in Chinese) [3] 彭文山,刘雪键,刘少通,等.含砂流动海水中Q235钢冲刷腐蚀行为研究[J].表面技术,2019,48(9):230. PENG Wenshan,LIU Xuejian,LIU Shaotong,et al.Erosion-corrosion Behavior of Q235 Steel in Flowing Seawater Containing Sand Particles[J].Surface Technology,2019,48(9):230.(in Chinese) [4] 顾鑫斌,杨毅,刘诗荟.海洋环境下舰船类液压设备的防腐技术[J].船舶工程,2019,41(S2):176. GU Xinbin,YANG Yi,LIU Shihui.Anticorrosion Technology of Warship Hydraulic Equipment Marine Environment[J].Ship Engineering,2019,41(S2):176. (in Chinese) [5] 夏兰廷,王录才,黄桂桥.我国金属材料的海水腐蚀研究现状[J].中国铸造装备与技术,2002(6):1. XIA Lanting,WANG Lucai,HUANG Guiqiao.Present Status of Research on Sea-water Corrosion of Metal in China.[J].China Foundry Machinery & Technology,2002(6):1.(in Chinese) [6] 张敏,张勇,乔珺威.高熵合金腐蚀性能研究进展[J].太原理工大学学报,2017,48(3):364. ZHANG Min,ZHANG Yong,QIAO Junwei.Recent Progress in Corrosion Properties of High Entropy Alloys[J].Journal of Taiyuan University of Technology,2017,48(3):364.(in Chinese) [7] 张雪,崔洪芝,王明亮,等.Al含量对AlxCoCrFeNi系高熵合金组织和耐蚀性能的影响[J].材料热处理学报,2018,39(12):29. ZHANG Xue,CUI Hongzhi,WANG Mingliang,et al.Effect of AlContent on Microstructure and Corrosion Resistance of AlxCoCrFeNi High Entropy Alloys[J].Transactions of Materials and Heat Treatment,2018,39(12):29.(in Chinese) [8] 史一功,张铁邦,寇宏超,等.AlCoCrFeNiCu高熵合金的电化学腐蚀性能研究[J].热加工工艺,2011,40(18):1. SHI Yigong,ZHANG Tiebang,KOU Hongchao,et al.Study on Corrosion Properties of AlCoCrFeNiCu High Entropy Alloy in Different Media[J].Hot Working Technology,2011,40(18):1.(in Chinese) [9] 周建龙,李晓刚,程学群,等.深海环境下金属及合金材料腐蚀研究进展[J].腐蚀科学与防护技术,2010,22(1):47. ZHOU Jianlong,LI Xiaogang,CHENG Xuequn,et al.Research Progress on Corrosion of Metallic Materials in Deep Sea Environment[J].Corrosion Science and Protection Technology,2010,22(1):47.(in Chinese) [10] 蒋淑英,林志峰,孙永兴.AlCoCrFeNi高熵合金铸态与退火态的耐蚀性[J].稀有金属材料与工程,2018,47(10):3191. JIANG Shuying,LIN Zhifeng,SUN Yongxing.Corrosion Resistance of As-cast and Annealed AlCoCrFeNi High-Entropy Alloys[J].Rare Metal Materials and Engineering,2018,47(10):3191. (in Chinese) [11] 周鹏飞,刘彧,余永新,等.放电等离子烧结制备AlCoCrFeNi高熵合金的组织演变与力学性能[J].材料导报,2016,30(22):95. ZHOU Pengfei,LIU Yu,YU Yongxin,et al.Phase Evalution and Mechnical Properties of AlCoCrFeNi High Entropy Alloys by Spark Plasma Sintering[J].Materials Reports,2016,30(22):95.(in Chinese) [12] 姚瑞敏,郑留伟.烧结温度对放电等离子烧结AlCoCrFeNi2.1高熵合金性能的影响[J].机械工程材料,2019,43(7):28. YAO Ruimin,ZHENG Liuwei.Effects of Sintering Temperature on Properties of AlCoCrFeNi 2.1 High-Entropy Alloy by Spark Plasma Sintering[J].Materials for Mechanical Engineering,2019,43(7):28.(in Chinese) [13] ZHAOR F,REN B,CAI B.Corrosion Behavior of CoxCrCuFeMnNi High-entropy Alloys Prepared by Hot Pressing Sintered in 3.5% NaCl Solution[J].Results in Physics,2019,15:102667. [14] XIANG C,ZHANG Z M,FU H M,et al.Microstructure and Corrosion Behavior of AlCoCrFeNiSi0.1 High-entropy Alloy[J].Intermetallics,2019,114:106599. [15] 吴兴财,张伟强,秦力,等.退火处理对AlCoCrFeNi高熵合金组织结构及性能的影响[J].热加工工艺,2015,44(8):220. WU Xingcai,ZHANG Weiqiang,QIN Li,et al.Effects of Annealing Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi High-entropy Alloy[J].Hot Working Technology,2015,44(8):220.(in Chinese) [16] 蒋淑英,林志峰,许红明.AlCoCrFeNi高熵合金铸态及退火态的组织和性能研究[J].稀有金属,2018,42(12):1241. JIANG Shuying,LIN Zhifeng,XU Hongming.Microstructure and Properties of Ascast and Annealed AlCoCrFeNi High-Entropy Alloys[J].Chinese Journal of Rare Metals,2018,42(12):1241. (in Chinese) [17] 曹楚南.电化学腐蚀原理[M].3版.北京:化学工业出版社,2008. CAO Chunan.Principles of Electrochemistry of Corrosion[M].3rd ed.Beijing:Chemical Industry Press,2008.(in Chinese) [18] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002. CAO Chuna,ZHANG Jianqing.An Introduction to Electrochemical Impedance Spectroscopy[M].Beijing:Science Press,2002.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-10-11
基金资助:国家自然科学基金(51571155); 陕西省教育厅重点实验室基金(17JS054); 陕西省自然科学基础研究计划项目(2017JM5057) 第一
作者简介:熊艳杰(1994-),女,西安工业大学硕士研究生。 通信作者简介:徐大鹏(1981-),男,西安工业大学副教授,主要研究方向为纳米功能材料和表面腐蚀与防护,E-mail:badi56441071@sina.com。
(编辑、校对 潘秋岑)
更新日期/Last Update: 2020-02-15